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1. Introduction

Mathematical puzzles differ from word puzzles in several ways and the most obvi-
ous difference – the use of numbers rather than words – is perhaps not the most
significant. There is no obvious counterpart to the ‘plain’ cryptic word puzzle, such
as those that appear in daily newspapers. In the word domain, those who seek to
move on to ‘thematic’ or ‘advanced’ puzzles can rely on an existing facility to deci-
pher and solve clues. In the number domain, there is no corresponding preparation
available and the novice solver is faced with a perplexing variety of puzzles from
the outset.

Another significant difference is encountered from the start. In word puzzles it
is normally feasible to read through the clues, to solve any one of them and then
to develop the solution to others from that point, making use of the intersections
of grid entries. In number puzzles it is normal for there to be only one clue (or
perhaps a linked pair) that can be solved immediately; the solver must identify it
to have any hope of making progress.

These puzzles resemble a game of chess where the ‘opening’ has been stipulated.
The player has little choice in that opening phase, being forced to follow the path
laid out by the setter. In the ‘middlegame’, there may be several developments
possible and the solver must evaluate which are likely to be most successful. Then
comes the ‘endgame’, which usually involves only straightforward calculations.

The aim of these notes is to set out the basic conventions (in Section 2), to
elaborate useful opening strategies (in Section 3), to set out possible developments
(in Section 4) and to leave the solver to master the endgame. The author will claim
success if the reader has contrived to avoid resignation by this point. The final
sections describe devices that may be employed by more challenging ‘opponents’.

Some crossword enthusiasts object to the term crossword for these puzzles,
arguing that they involve numbers rather than words. This is, of course, justifiable
semantically, but does not diminish their status as logical challenges, not that a well
constructed and clued word puzzle is any less precise in a logical sense. What is more
important is the crossword nature and here it is arguable that the mathematical
puzzle fulfils that objective better than the word puzzle. The intersection of across
and down entries is very important, but there are often essential links between clues
whose entries are distant in the grid, something that rarely occurs in word puzzles.
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A more legitimate complaint is against the word ‘mathematical’. Most modern
puzzles are arithmetic in nature and do not require algebra or other mathematics of
a similar level. Some of the early Listener puzzles demand much more, but puzzles
of that type rarely occur now. One reason is that some of them are open to attack
by computer and thereby become glorified jigsaw puzzles. For most puzzles the
content of Sections 2–4 will suffice.

Just as there is no commonly agreed ‘plain’ mathematical puzzle, it is difficult
to define what is meant by the phrase, especially in the light of the great variety in
style and content. Most have a set of clues expressed in terms of symbols – usually
roman letters – whose numerical values must be deduced in order to construct the
grid entries. The clues normally use algebraic notation, explained in Section 2.
These notes do not give any special treatment of hybrid puzzles where some clues
are numerical and some word-based. These often deliver several development pos-
sibilities and hence are easier to solve, at least for someone well-versed in cryptic
clues. Similarly, puzzles that do not even appear to be numerical until the solution
is well advanced are given no special treatment, nor are word puzzles where grid en-
try depends on simple arithmetical calculations using the numerical value of letters
(A = 1, B = 2, . . .).

It is assumed that the reader has access to a calculator, preferably a scientific
one that can display reasonably large numbers and offers square roots, powers and
bracketing of sub-calculations. This does not imply that manual calculation should
not to be used: the possession of a dictionary does not mean that every word in a
puzzle must be referenced therein.

Crosswords are relatively free from jargon, although there are two terms that
are worth defining at this point. The number to which a clue leads is the answer
and will be assumed to be decimal, i.e., given in base 10. The number to be written
into the grid is the (grid) entry. This may be different if the puzzle involves other
number bases or some other transformation is required before entry.

The following typographical conventions are used in what follows. Mathemat-
ical text uses standard notation, with italic letters for symbols and a normal font
for numbers, e.g., n = 2. Clues are given in (small) roman capitals, as in published
puzzles. Numbers that are to be entered in the grid or a working record or read
from a calculator are given in a fixed width font, as in the tables in the Appendix,
e.g., WORD = 12345 or 12 5 if the third and fourth digits are not yet known.

Finally, these notes include some examples from published puzzles. The symbols
have usually been changed to disguise the source, in case the reader encounters the
puzzle and wishes to tackle it afresh.

2. Basic Conventions

This section sets out some of the common notations and assumptions made by
setters. These may be made explicit in the preamble to the puzzle, but their absence
is usually not significant. The opportunity will be taken to add some definitions
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of the more mathematical concepts that frequently appear and to offer advice on
some calculator techniques.

It is dangerous to make definitive statements since each of these puzzles tends
to be different in some way from others and setters are forever investigating new
ideas. Nonetheless, the author cannot recall a puzzle in which any of the numbers
in use was negative. Zero has occurred, although not as a clue answer. Fractions
have certainly put in an appearance, but rarely.

One common convention – critically important for the solver – is that no answer
should start with a zero. Also, it is almost always the case that grid entries are all
different although, in a puzzle with a variety of number bases, answers may be the
same.

Algebraic notation
Clues should be assumed to conform to normal algebraic notation, unless stated
otherwise. In particular, juxtaposition means multiplication. Thus, if A = 2 and
B = 3, then AB = 6, not 23. This saves space and makes the clues easier to read.

Division is quite rare, perhaps because it gives away quite a lot of informa-
tion about common factors (see later). When it does occur, it is most commonly
represented by A/B, rather than A

B or A÷ B.

Powers and roots
As we see in the next two sections, powers of numbers are extremely useful: they
often provide the starting point for a solution. There are two notations, one math-
ematical and one used in computer programming. The choice usually depends on
the capabilities of the puzzle’s printer. The mathematical definition is

xn = x × x × x × · · · × x (n copies of x).

This will be printed in one of the forms AB or A∧B or AAA · · ·AA (B copies of A).
The opposite calculation, that of roots, occasionally appears in clues, but is

required much more in the solution process. We spend as much time moving from
the grid to clues as from clues to the grid, e.g., we may ask what number, raised
to a known power, could produce some partially completed grid entry. What is
required is the nth root, written n

√
x:

n
√

x × n
√

x × · · · × n
√

x = x, (n copies of n
√

x).

Before discussing how to evaluate these powers and roots, there are some math-
ematical conventions that may occasionally be used, one of which is useful if one’s
calculator has limited functionality:

x−n =
1
xn

, x1/n = n
√

x, xm/n = n
√

xm.

The following examples illustrate these conventions:

2−3 = 1/23 = 1/8 = 0.125, 641/3 = 3
√

64 = 4, 43/2 =
√

43 =
√

64 = 8.
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(Note that ‘square roots’ are usually written
√

x rather than 2
√

x.)
Some powers are given in one of the tables in the Appendix. Scientific calculators

have keys to help calculate them, usually labelled xy . Thus, pressing 5 xy 4 gives
625 for 54.

Roots are more problematic, since there are at least two different calculator
conventions, while some calculators have no key for direct root-finding. It is for
such calculators that the fractional power convention is particularly helpful. Each
of the following should give the answer 3 for 5

√
243 (on an appropriate calculator):

5 x
√

y 243, 243 x1/y 5, 243 xy 0.2.

(The direct root facility often shares the same key as the power facility and is
accessed by first pressing a special key, perhaps labelled ‘shift’, ‘inv’ or ‘2nd’.)

Factorials
A further shorthand connected with multiplication is the factorial notation: n!.
This stands for the product of all whole numbers between 1 and n inclusive, e.g.,

4! = 1 × 2 × 3 × 4 = 24, 10! = 1 × 2 × · · · × 9 × 10 = 3628800.

Some calculators have a x! key and a few factorials are given in one of the tables
in the Appendix. It is clear from that table, if not from the examples above, that
these numbers grow in size very rapidly, so that the appearance of a factorial in a
puzzle usually provides valuable information.

Rules of precedence
When a clue contains a variety of operations: +, −, ×, /, ∧, we require rules
to determine the order of calculation. The following rules agree with up-to-date
calculators, although some earlier versions do not obey them:

powering is done first;
multiplication and division are done next;
addition and subtraction are done last;
for two operations with the same precedence, such as addition and subtraction,
work from left to right.

Thus,
3 × 5 − 8 × 22 + 6 × 7 = 3 × 5 − 8 × 4 + 6 × 7

= 15 − 32 + 42
= −17 + 42
= 25.

These conventions can be overruled by the use of brackets. When these are
inserted, their contents must be evaluated before anything outside. Thus

(3 × 5 + 2) × 4 = 17 × 4 = 68, while 3 × 5 + 2 × 4 = 15 + 8 = 23.
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Prime numbers

Puzzles often involve these directly, e.g., coding some by symbols and requiring the
solver to deduce them. A prime (number) is a positive whole number whose only
divisors (or factors) are 1 and the number itself, e.g, 7, 11, 101. By convention, 1
is not regarded as a prime, so that the smallest prime is 2. A list of all primes less
than 10000 is given in the Appendix.

Since much of the solution process can involve an analysis of products, the
factors of a number are extremely important. These can be deduced from its prime
factors, which dictates a rôle for a piece of mathematics often called the Fundamental
Theorem of Arithmetic. This states that every number larger than 2 can be written,
in a unique way, as the product of prime numbers. When this is done in practice,
repeated prime factors are usually collected together to give an appropriate power.
Thus

756 = 2 · 2 · 3 · 3 · 3 · 7 = 22 · 33 · 7.

Prime factors for numbers up to 1000, expressed in this way, are given in a table in
the Appendix.

For a larger number n, we can proceed as follows. Work through the prime
numbers in order, starting with 2. Using each, repeatedly divide n for as long as
the answer is a whole number, replacing n by that whole number. Store the number
of successful divisions for that prime: it will be its power in the answer. Stop when
1 is reached. There are some shortcuts available. For example, there is no need to
divide by 2 if the number is odd or by 5 if it doesn’t end in 5. Also, there is no need
to use a prime larger than

√
n: any number left by that time must be prime. The

process can be speeded by storing the current number in the calculator’s memory
so that it can be retrieved after each failed division and by checking the current
number against the table of primes in the Appendix once it is less than 10000. For
example, for 21496293 we should expect to use primes no larger than 4636. We find
(omitting unsuccessful divisions):

21496293/3=7165431, 7165431/3=2388477, 2388477/3=796159,
796159/7=113737,
113737/13=8749, 8749/13=673.

The table shows 673 to be prime, so 21496293 = 33 · 7 · 132 · 673.
The applications of this information in solving puzzles are wide-ranging. For

example, if we know that Y = 14, the clue BAB/Y implies that at least one of A
and B is divisible by 7 and at least one is divisible by 2. This information may be
usable in some other clue or partial grid entry to fix A or B.

The prime factors are also useful in dealing with powers and roots. If a number
is a perfect square, its prime factors must each occur an even number of times.
Thus,

324 = 22 · 34, and so
√

324 = 21 · 32 = 18.

This fact, and its extension to cubes and other powers, can often be used directly
to glean valuable information.
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An understanding of this factorisation, however, can be useful in other ways.
One published puzzle involves triples of numbers, (α, β, γ), where

√
α +

√
β =

√
γ.

An assumption that this requires each number to be a perfect square will not lead
to a solution. Consideration of prime factorisation suggests that each number could
be a perfect square multiplied by an identical set of odd powers of primes. For
example, α = 60, β = 135, γ = 375 would be possible, since

√
60 +

√
135 =

√
(3 · 5) · 22 +

√
(3 · 5) · 32

=
√

22
√

15 +
√

32
√

15 = 2
√

15 + 3
√

15

= 5
√

15 =
√

15 × 52 =
√

375.

Algebraic manipulation
It is rare that puzzles require an explicit knowledge or use of algebraic manipulation,
although this is not unknown. Section 6 gives some examples. It is, however,
difficult to draw a line here. Some may consider that the square root calculation
in the previous item requires formal algebra, while others may label it as common
sense. (It uses the algebraic rule:

√
mn =

√
m ×√

n.)
A similar example concerns A+B, where both are known to be divisible by n,

say. Then the sum is also divisible by n, which many would regard as obvious. A
formal justification states that we must have A = pn and B = qn, for some p and
q, so that A+ B = pn + qn = (p + q)n and hence has a factor n.

This fact can be of help. Suppose we know that Z = 13. Then the answer for
PUZ + ZLE must also be divisible by 13. If we have some partial entry such as
17 56, we can deduce that the only multiple of 13 is 17056.

3. Getting Started

There are two aspects to the initial stages of the solution: preparation, followed by
a search for a clue or set of clues that can provide a starting point.

The Preamble
Since there is no commonly agreed standard puzzle of this type, each should provide
some explanation of its construction and objectives. This will appear before the
clues and is usually called the preamble. The solver should read this very carefully,
taking note of every point in it, no matter how minor or redundant it may appear.
A well-edited puzzle is likely to have no redundant information!

The preamble may state that no answer starts with zero. This is virtually
compulsory and the absence of any such statement should not be interpreted as
suggesting the opposite. Similarly, puzzles usually do not contain the same entry
more than once. The absence of a statement to this effect is unlikely to mean that
there are repeated entries, but this ‘rule’ is not as inflexible as the earlier one.

Take note of any comment about algebraic notation. There are puzzles where
AB stands for the 2-digit number composed of A and B, but they indicate that fact
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or provide an alternative notation if multiplication is also used. Also, take note of
whether the clues are labelled by the grid numbers or by symbols whose values are
to be determined. This latter style allows some useful deductions and is discussed
later.

Finally, look out for any unusual wording: it may be disguising some part of
the puzzle. For example, a comment about “missing the point” may mean that
fractions in decimal form are involved, with the point ignored.

Record-keeping

If, as usual, the puzzle contains symbols whose values are to be established, it is
sensible to draw up a list of these symbols so that their values can be recorded –
ideally in pencil – as they are found. If there is a well-defined set of numbers for
these values, a list of those should be drawn up so that, at any time, the solver knows
not only the current values but which values are available for the other symbols.

When drawing up these lists, it is worth noting whether any of the letters o,
O, I, l, x or X occur, since they can be misread as 0, 1 or ×. Indeed, it is not
unknown for even the most prestigious puzzles to contain typographical errors of
this nature. Setters are discouraged from using these letters, but there may be good
reason to ignore that advice, e.g., a setter trying to construct clues that spell words
will find it difficult in the absence of the two vowels I and O. Should one arrive at a
contradiction that seems inescapable, it may be possible to proceed by examining
the clues involved to see if the problem can be resolved by adjusting an ‘I’ or an
‘l’ or some other likely culprit. The puzzle may turn out to be solvable, but more
challenging than intended!

If the answers to the clues are to be processed before entry, e.g., expressed in a
different number base, then it may be worthwhile drawing up a list of clue numbers
to record these intermediate answers.

Starting the Solution

It was mentioned at the outset that the setter is likely to have created just one
element of the puzzle from which the first deductions can be made. Solvers may
have to search through the clues several times before finding this. The following
seven devices are commonly used; sometimes more than one is required.

1. Small Numbers
If one of the clues consists of a pure power (perhaps written as an explicit product)
for which the grid entry is only of length 2 there may be few possibilities. Thus, if
the clue is P4 or PPPP, we know that P is 2 or 3, since 24 = 16 and 34 = 81, while
44 exceeds 99.

The following examples are variants of extracts from published puzzles. The
clue DOGGED, where each letter represents a different number in the range 1–26,
has entry length 2. It is clear that all these letters must be small; trial and error
shows that one of D or G must be 1 and the other is either 2 or 3. Consideration of
other clues involving D and G allows progress to be made. In another case, RU4M2

has length 4. It is easy to see that U and M must be small. Further progress can
be made since the entry intersects with that for another clue involving U and M.
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2. Large Numbers
Powers can also be informative if the entry has a long length. Suppose we know
that Q9 has length 5. Then Q = 3 since 29 = 512, 39 = 19683 and 49 = 262144.

In a published puzzle, we are told that an entry of length 4 is a square, a cube
and a fourth power. This means that it is also a twelfth power and the only one of
length 4 is 212 = 4096.

The situation with factorials is even more informative. Only 4! has length 2;
5! and 6! have length 3, while all larger factorials have different lengths. In a
published puzzle, B!− IG has entry length 6 and all symbols represent one of 1–26.
The largest possible value for IG is 650, so B must be 9 and the entry is 362 ,
since the next digit of 9! is larger than 6.

3. Symbolic Powers
If the clues contain several instances of, say XS and XT, for various X then it is
likely that S and T are 2 and 3 in either order. A study of the lengths of the relevant
entries may confirm this and point to the correct choice. One-off power symbols
may represent a larger number, but then the methods in items 1 and 2 may come
into play.

In a published puzzle, P4 has entry length 4 and PT has length 3. This means
that T is 2 or 3. The puzzle also contains four instances of symbols to the power of
W, with entry lengths 3, 2, 3, 3, which strongly suggests W = 2 and hence T = 3,
with further information on P to follow.

4. Links
Look out for the same symbol appearing in a simple form in more than one clue,
especially if the entries intersect. For example, suppose that 1 Across is E4, length
4, and that 2 Down (starting in the second square) is E2, length 2. The across clue
tells us that E must be between 6 and 9 inclusive. The down clue tells us that it
must be between 4 and 9 inclusive, but together we can deduce that E = 7, since
only 74 = 2401 and 72 = 49 provide the correct intersection.

The links need not intersect. Suppose that F3 has length 4, while F7 has length
10. The first tells us that F must be at most 21, while the second tells us that F
must be at least 20. Hence F is 20 or 21. For the former, the larger answer will
contain seven zeros and there is a good chance that we can eliminate it on that
account: see item 6.

5. Palindromes
These occur frequently in puzzles, in two ways. Some answers may be shown to be
palindromes by a label or by the fact that its clue is also palindromic. In this second
case the preamble must state that this is the case. Particularly well constructed
puzzles may be able to state that only such palindromic clues lead to palindromic
answers.

Should palindromes be a feature – no matter how they are indicated – they are
a valuable solution aid. Thus, a palindromic perfect square of length 3 must be one
of 121, 484 or 676.

One published puzzle contains only palindromes that are divisible by their
length. This means that entries of length two must be 22 or 44 or 66 or 88.
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6. No Leading Zero
This property, assuming it can be relied upon, should be borne in mind throughout
the solution since it can remove some competing entries at any stage. For example,
in item 4 we had four possible answers for F4 of length 4: 1296, 2401, 4096 and
6561. If there are down entries emanating from the second and third digits, we
could immediately rule out F = 7 and F = 8, due to the zeros in their fourth
powers.

7. Symbolic Clue Numbers
This device, should it be used, tends to make the puzzle a little harder. But it may
yield information in the early stages of the solution. For example, grids usually
contain very few places where there is an across and a down entry starting from
the same square. Their clue numbers must correspond to symbols for which there
is more than one clue.

Some more advanced puzzles replace numbered clues by sets of symbolic expres-
sions that represent a connected set of numbers. (These may use more mathematical
concepts such as those in Section 6.) Occasionally these are listed in the order in
which the solver should tackle them – or even the reverse order! – but neither
indication should be assumed until there is supporting evidence. The most usual
starting point involves a set where there is a repeated symbol or a pair of symbols
that label intersecting grid entries of short length. In this type of puzzle, reversals
of grid entries are common, for which the usual notation is J′ for the reverse of J.
A set involving J and J′ could prove just as useful as one involving J twice.

4. Developing the Solution

Once a start has been made, the solution tends to develop in two ways. A value
will have been identified for one symbol. That can be used in other clues and may
shed light on further symbols using the same methods as in the previous section.
For example, if a value has been found for E, then a clue SESS effectively becomes
a cubic power.

At the same time, the solver may have been able to enter numbers into the grid.
The digits where these intersect other entries may be exploitable to provide further
information, in ways that will be explored later in this section.

It is possible that the solver will be able to travel along a clear path, identifying
more symbols and entering more into the grid, perhaps even to the end of the puzzle.
It is more likely, however, that a point will be reached where there is no certain
deduction and a set of alternatives appear: the ‘middlegame’.

It is likely that all but one of these will lead to a contradiction, but perhaps
after a significant amount of work. There are different methods for dealing with
this. Some solvers have a gut feeling for the correct choice and will follow it in the
hope that no contradiction appears. If this fails, they will most likely have to rub
out their entries and start afresh, since it is difficult to disentangle the correct from
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the erroneous. (Note that this may happen if an error is made in calculation or
transcription, even with correct logic.)

Another technique is to maintain careful records. A ‘tree’ diagram could be
constructed, with a fork wherever a choice is made and a record of what has been
calculated along each branch and from which clue. A fragment of such a tree could
be the following:

M = 2
(4A)

S = 5
(5D)

S = 11
(5D)

R = 11
(11A)

R = 7
(11A)

MRS = 110
(28D)

MRS = 154
(28D)

impossible
0 starts entry

and so on

...................................................................
............
.............
............
............
............
.............
............
........

..........................................................................................................

................................................................

................................................................

................................................................

................................................................ ..............................................

This is time consuming and potentially costly in paper. A middle road is
to follow one’s instincts, but to annotate the main record of symbol values with
a counter showing the order in which they were identified and perhaps the clue
involved. The solver may be able to backtrack without having to start again from
scratch.

Once numbers start to appear in the grid, a wide range of tools become available.
The following items illustrate 10 of these. Each may, on its own, deliver only a small
grain of information, but in conjunction with one or more of the others that may
be enough to determine the value of a symbol.

As more and more numbers start to appear in the grid, it will become as
common to deduce information about clues from partial grid entries as to deduce
entries from clues. Several of the items that follow are more useful in such reverse
working.
1. Ordering
Since it is almost certain that all answers are positive numbers, any subtraction will
yield information. Thus, a clue such as J(K− L) tells us that K is greater in value
than L.

2. No Leading Zero
This has been mentioned several times already. If anything, it grows in importance
as the grid fills.

3. No Repeated Entries
This can occasionally close off a branch of the tree. It may be helpful in a large
puzzle if there are several squares or cubes of small size, since there are a limited
number of these.

4. Palindromes
If this is a feature of the puzzle, it should be constantly monitored. These clues may
prove easier to crack because of the reduced number of possible entries. One may be
able to eliminate a possible contender if the preamble states that only palindromic
clues lead to palindromic entries.
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Another useful contribution occurs when a number is known to be palindromic
and a crossing entry fills in one of its digits. Then, unless it is a central digit, it
will be possible to fill in its mirror image. This new digit may also appear in a
crossing entry and provoke the entry of its mirror image and so on, until we arrive
back where we started or at a central digit or a square with no crossing entry.

This is a vital part of any puzzle where every entry is palindromic; once a digit
is entered, it can spread throughout the puzzle. In a situation where there is more
than one option, it can quickly rule out some possibilities, e.g., by a 0 propagating
to the start of an entry.
5. Symbolic Clue Numbers
These were mentioned in the previous section, but a further use arises as the solution
develops. Suppose that we have deduced sufficient symbols to be able to compute
the value of clue G and that the entry is 193472, say. Then G must be one of the
grid numbers for which the entry has length 6. Further, if a partial entry in such
a location is significantly consistent with 193472 we may be able to conjecture the
value of G. A more complicated situation in which progress can be made is when G
itself is involved in the clue. Then trial and error with available grid numbers may
deliver a match.
6. Squares
The first and last digits of answers are particularly important. The first digit
dictates the size and we shall take advantage of that in item 10. The final digit is
frequently involved in logical arguments, based on facts such as the following. If
the answer is known to be a square then it has one of only six possible endings:

0 (?02), 1 (?12, ?92), 4 (?22, ?82), 5 (?52), 6 (?42, ?62), 9 (?32, ?72),

where ‘?’ can be any sequence of digits.
7. Primes
Primes can only end in 1, 3, 7 or 9. This fact, and the table in the Appendix, can
help in puzzles where primality is a feature.
8. Divisibility
There are several rules for determining whether one number is divisible by another.
The simplest of these are set out below:

2: the last digit must be even;
3: the sum of the digits must be divisible by 3,

3 divides 72318: 7 + 2 + 3 + 1 + 8 = 21 = 3 × 7;
4: the last two digits must be divisible by 4,

4 divides 9156: 56 = 4 × 14;
5: the last digit must be 0 or 5;
8: the last three digits must be divisible by 8,

8 divides 82328: 328 = 8 × 41;
9: the sum of the digits must be divisible by 9,

9 divides 64035: 6 + 4 + 0 + 3 + 5 = 18 = 9 × 2.
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The following example shows how this last case can be put to use. Suppose
that the grid entry for ASSESS is 4 87 and that we know S = 3. Then 81 × AE

must be divisible by 9. This means that the two missing digits in the grid entry
add up to 8 or 17, to ensure the overall digit total is 27 or 36. The only possibilities
are 08, 17, 26, 35, 44, 89 and their reversals. It takes little time on a calculator to
verify that only 42687 is divisible by 81. Further, the quotient is 527, for which the
table in the Appendix shows the prime factors to be 17 and 31. If the number 1 is
ruled out, these must be the values of A and E in some order.

The case of 5 is worthy of note. Once a component ending in 0 or 5 is identified,
all its multiples must end in the same. This can move quite rapidly through the
grid. In some cases we can deduce an entry of 5 since the alternative would mean
a crossing entry starting with zero.
9. Divisors
Suppose we know the final digit of the entry for RS and that R ends in the digit
n. We can immediately deduce the last digit of S in the cases n = 1, 3, 7, 9 and
have the choice of only two possibilities in the cases n = 2, 4, 6, 8. This deduction
is made as if we were dividing some 2-digit number by n.

For example, if RS = 1 7 4 and R = 9, then we note that 54 = 9 × 6
and conclude that S = 6. (The 5 in 54 has no significance because of possible
‘carries’ in the rest of the calculation.)

Another example is RS = 1 7 4 with R = 8. Then we note that 24 = 8 × 3
and 64 = 8 × 8, concluding that S = 3 or 8. We may have some other
information that will dictate which is the correct version.
10. Estimation
This technique is wide-ranging and powerful. It may be required in a particularly
difficult puzzle or when one has lost the setter’s intended thread. It is also helpful
in the final phase of the solution.

When a grid entry is partially known, we can deduce the range of possible values
by replacing all unknown digits by 0 or by 9, assuming the puzzle uses base 10. (A
starting digit must be replaced by 1 rather than 0.) Applying known information
in the clue will, in turn, deliver information about some of the unknown symbols.
In some cases this may be sufficient to determine their values. This is best seen by
example.

Suppose that we know EDDY = 2 9 , where E = 7 and Y = 11. Then DD
can be bounded between

20900/77 = 271.42 · · · and 29999/77 = 389.59 · · ·

and since it is a square, it must be one of 172, 182 or 192. It is straightforward to
check that only 182 will reproduce the middle 9, so D = 18 and EDDY = 24948.

In some cases it is quicker to use the digit 5 to replace unknown digits, so that
one operates in the middle of the range. For example, suppose CRAB = 831 ,
where R = 37, A = 7 and B = 11. Now 58315/(37×7×11) = 20.46 · · ·. If we further
know that all symbols represent prime numbers, there are only a few possibilities
to try and C = 31 is soon discovered, giving CRAB = 88319.
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This example was potentially difficult since one knew neither an estimate of the
size (no first digit) nor any divisibility information (no final digit). The next two
examples – with a larger entry length and proportionately less information – show
how we can achieve more if we do have that information.

We stay with CRAB, with R, A and B as above, but dispense with the primality
restriction. Suppose that CRAB = 4 87 . In this case it is a good tactic to test
each of 4 8755/2849, replacing by 0, 1, . . . , 9 to see if a near whole number
appears. We find 438755/2849 = 154.0031 · · · is the nearest and delivers a feasible
result with C = 154. Other nearby whole numbers are 147, 161, 168 and 175, but
none matches the 7 in the answer after recomputing CRAB.

Now suppose we have CRAB = 34 7. Since RAB = 2849, an application
of item 9 shows that C must end in 3. Bounding information is

134007/2849 = 47.03 · · · and 934997/2849 = 328.18 · · ·

so we have 28 possible numbers of the form ( ) 3 to check. It is likely to be
quicker to test each of 34557/2849 for an answer near a whole number ending in
3. This uncovers 8 as the only possibility, so that C = 293 and CRAB = 834757.

There is one final observation to make about this method. Those who rework
these last calculations will discover that the number 2849 must be keyed repeatedly.
This can be avoided by making use of the memory facility in one’s calculator, to
store that number once and bring it back quickly when needed.

As the grid fills up and more symbol values are determined the solver will have
more options available and the problem shifts to deciding which will be the most
efficient. Indeed, at some stage all symbols may be fixed and the grid can be filled
by straightforward computation. (In practice, it is often the case that a few symbols
appear only once and will be determined as those final clues are solved.) Whatever
the case, the solver will have many of the devices above to help in the ‘endgame’
phase.

Finally, it is good policy to perform a check once the grid has been completed.
Revisit the clues in order, recalculate their values using those determined for the
symbols involved and check that their grid entries are correct.

5. Number Bases

The numbers we use in everyday life are expressed ‘in base 10’, related to the fact
that we have single digit representations only for the first 10 numbers, 0–9. But
other number bases are possible – computers use base 2 or base 16 – and mathe-
matical crossword setters have made use of this to extend the range of their puzzles.
There have been puzzles that use a few different bases and ones that use a different
base in each row and a different base in each column. This is usually explained in
the preamble, although there are puzzles that use a single base throughout, with no
explanation other than some oblique hint in the title or the preamble. This section
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finishes with some comments on how to tackle puzzles where number bases must be
deduced.

If this is a feature, it is essential to know how to translate between different
bases. (The Appendix contains a table that gives each number in the range 1–1000
in bases from 4 to 12, with instructions on how to use the table for bases 2, 3 and
16.)

We concentrate on how to convert to and from base 10. Conversion between
other bases can be done using base 10 as an intermediary. Only whole numbers are
treated, although fractions can be expressed in forms other than ‘decimal’.

There is a useful piece of notation that helps in setting out examples, although
it is not used in the puzzles themselves. When different bases are in use, we can
specify the base by listing it as a subscript after the number. Thus, we have 1810 =
100102 = 2003 = 1216.

On the subject of notation, we require single symbols for each number less than
the base, just as we use 0–9 for base 10. For bases less than 10 we merely use these
familiar decimal digits, but for bases larger than 10 we require single symbols to
represent 10, 11, etc. The most common convention – not always adopted by setters
who may have to avoid clashes with the rest of the puzzle – is to use the letters A,
B, etc. Thus hexadecimal (base 16) uses A = 10, . . . , F = 15.

There is one final remark to make about notation. Mathematicians regularly
represent sequences using subscripts, e.g., x0, x1, x2, . . .. This allows them to talk
about the number d1d2 · · ·dn when devising formulae and calculation techniques
for ‘general’ numbers. We shall avoid this, choosing a simpler notation at the cost
of not dealing with a general sequence length. It should, however, be clear how to
convert the methods to other lengths.

We start with the easier problem, that of converting from base x to base 10.
This is done directly from the meaning of the number notation. In that base, the
number fedcba represents

n = fx5 + ex4 + dx3 + cx2 + bx + a.

Here, each of f, e, d, c, b, a must lie between 0 and x − 1. To convert to base 10,
replace x and each of these digits, if necessary, by their base 10 equivalents and
evaluate the given expression. Thus,

210637 = 2 × 74 + 1 × 73 + 0 × 72 + 6 × 7 + 3 = 519010.

There is an alternative method, related to the mathematical device of nested
multiplication or synthetic division, which is more efficient. We start with the
leading digit, multiply it by the base and add the next digit, then repeat this until
the final digit is used. Thus, for the number fedcba, we use the following key presses
on the calculator:

f × x + e = × x + d = × x + c = × x + b = × x + a = .



5. Number Bases 15

Thus, for the hexadecimal number 3A50E, we have

3 × 16 + 10 = 58,

58 × 16 + 5 = 933,

933 × 16 + 0 = 14928,

14928 × 16 + 14 = 238862,

giving the answer 238862 in base 10.
To convert from base 10 to base x, we effectively reverse this second method,

repeatedly dividing by the base (instead of multiplying) and ‘subtracting’ (recording
and ignoring) the remainders, which form the digits in the new base. The key
calculation is:

n divided by x gives quotient q and remainder r,
with r recorded and q replacing n. The calculation is repeated until q is zero. The
number in base x is then constructed by juxtaposing the remainders in the reverse
order of their calculation. For example, to convert 3413 to base 6, we find

3413/6: quotient 568 remainder 5
568/6: quotient 94 remainder 4
94/6: quotient 15 remainder 4
15/6: quotient 2 remainder 3
2/6: quotient 0 remainder 2

Hence 341310 = 234456. Another example is 9371, to be converted to base 11:
9371/11: quotient 851 remainder 10
851/11: quotient 77 remainder 4
77/11: quotient 7 remainder 0
7/11: quotient 0 remainder 7

Hence 937110 = 704A11.
It is usually the case in puzzles with different number bases that the bases must

be deduced as part of the solution. The principal tool for this is size. Numbers get
shorter in length as the base increases. Conversely, numbers in binary (base 2) or
ternary (base 3) are much longer than in decimal.

A clue with many multiplications and a short entry length is likely to be entered
using a large base. A clue that uses only addition or, even more so, subtraction is
likely to be entered in a small base.

If the decimal version of an entry is known or guessed, it is helpful to compare
it with xn and xn−1 for various x, where n is the entry length. It must lie between
these numbers if base x is feasible, assuming that the entry cannot start with zero.
For example, consider the decimal n = 13421 with an entry length of 7. The smallest
base 5 entry is 1 000 0005 = 56 = 1562510, which is larger than n, so base 5 is not
feasible. But 46 = 4096 and 47 = 16384, which encompass n, so base 4 is feasible.
Finally, 37 = 2187 is smaller than n, so base 3 would require more than 7 digits.
This means the base must be 4 and the entry is 3101231.

In a published puzzle, we are told that each symbol is one of the first six prime
numbers and that GGG has a palindromic entry, of length 4. This greatly cuts
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down the possibilities. There are four, but surprisingly the grid entry is the same
for each: 1331. (The values for G are 5 (base 4), 7 (base 6), 11 (base 10) and 13
(base 12).)

Partial grid entries are not as helpful as in decimal puzzles since divisibility
rules are not straightforward. Indeed it is possible to have even decimal numbers
that appear to be odd in an odd number base: 2210 = 2113.

One useful observation is that the number base must exceed any digit already
in place. Thus, if an entry appears as 6 9 , it must represent a number in a
base larger than 9. If the puzzle allows bases up to and including 12, the possible
decimal ranges for the entry are, for each base:
60090–69999 (base 10), 87945–102475 (base 11), 124524–145127 (base 12).

These (non-overlapping) ranges may help determine which base is to be used. On
the other hand, a row that contains to date only 0 and 1 may turn out to contain
binary numbers. There is, however, a warning to sound here. This device does
not carry through to isolated squares that do not belong to an entry in a row or
column. Thus a binary row may contain a square holding 6 if it belongs only to an
intersecting column entry.

6. Advanced Topics

The following topics lie in the field of mathematics rather than arithmetic. They
have been selected since they have already appeared in puzzles and are fruitful
enough to make reappearance a possibility.

Algebraic calculations

Some puzzles demand a higher level of algebra than that employed in the preceding
sections. This was certainly true of the series of 45 puzzles composed by Rhombus for
the Listener between 1960 and 1980. Two examples of the underlying mathematics
are given here.

The P and S Game This involves a quantity called the P/S value of the numbers
P and S, defined by P+ S+ PS. One method of making progress is to note that

p + s + ps = 1 + p + s + ps − 1 = (1 + p)(1 + s) − 1,

so that adding one to the P/S number gives a number with useful factors.
Can You Do Division? This is one of the most elegant mathematical puzzles

ever published. The clue for each grid entry is merely a count of the number of
its divisors. The method for making progress is to use prime number factorisation,
since

n = paqbrcsd · · · has a count of divisors: (a + 1)(b + 1)(c + 1)(d + 1) · · · .
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Greatest Common Divisor & Least Common Multiple
For a pair of (whole) numbers m and n, there are two numbers that are important
in mathematics and play a rôle in some puzzles: gcd(m, n): their greatest common
divisor , and lcm(m, n): their least common multiple. (The former is sometimes
called the highest common factor and written hcf(m, n); upper case letters may
also be used.)

gcd(m, n) is the largest number that divides both m and n.
lcm(m, n) is the smallest number that is divisible by both m and n.

The lcm is used for adding fractions, while the gcd is useful for computing the lcm.
Indeed, there is a sequence of calculations, called the Euclidean Algorithm,

which will find the gcd for any pair of numbers. Using the gcd, we have

lcm(m, n) = m × n/gcd(m, n).

For mathematical puzzles, however, the following method is more useful. It is
based on the prime factorisation of m and n and constructs the factors of gcd(m, n)
and lcm(m, n) from them.

The prime factors of gcd(m, n) are those that are common to m and n; the
power of each factor is the lesser of the powers of the corresponding prime in
m and n.
The prime factors of lcm(m, n) are those that are in either m or n or both; the
power of each is the greater of the powers of the corresponding prime in m and
n (counting an absent prime as having power zero).

For example, consider

m = 24 = 23 · 3, n = 84 = 22 · 3 · 7.

Then
gcd(m, n) = 22 · 3 = 12, lcm(m, n) = 23 · 3 · 7 = 168.

Finally, the numbers m and n are called relatively prime if gcd(m, n) = 1. This
means that they have no factor in common (other than 1). This condition is often
imposed in mathematics to remove solutions that are scaled versions of ones already
found. It can also occur in puzzles and, if stated in the preamble, it is normally
helpful to the solver.

Sequences
There are many interesting sequences of numbers in mathematics, some of which
have appeared in mathematical puzzles.

One of the most famous, which has appeared in word-based puzzles as well
as numerical ones, is the Fibonacci sequence. The first two terms are both 1 and
thereafter each term is the sum of the previous two. Hence the sequence proceeds
1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, and so on:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . .
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This sequence is held to model various natural phenomena.
An arithmetic sequence or arithmetic progression is one where consecutive terms

differ by the same amount, such as 2, 4, 6, 8, . . . or 15, 12, 9, 6, . . .. Some puzzles
require the sum of such sequences, for which there is a simple rule:

sum of n terms = average of first and last terms × number of terms.

Thus the sum of the odd numbers less than 100 is 1
2(1 + 99) × 50 = 2500.

A common arithmetic sequence is the sum of the first n whole numbers, for
which this rule gives

Tn = 1 + 2 + 3 + · · · + (n − 1) + n = 1
2n(n + 1).

The notation Tn has been chosen since this is the nth triangular number. These
count the number of dots in arrangements such as •••••• . The sequence of Tn is:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, . . . .

Similarly, we could seek square and cube numbers as the count of dots required
to construct those shapes. These are just the familiar squares and cubes. We can
add these up, just as we did for 1 + · · · + n:

12 + 22 + 32 + · · · + n2 = 1
6n(n + 1)(2n + 1),

13 + 23 + 33 + · · · + n3 = 1
4n2(n + 1)2.

(Note the intriguing outcome that the sum of the first n cubes is the square of the
sum of the first n numbers.)

Pythagorean Triples
The triple of whole numbers (a, b, c) is Pythagorean if they represent the sides of
a right-angled triangle. This translates from geometry to algebra as a2 + b2 = c2.
There is a guaranteed method for finding all triples of this kind:

a = m2 − n2, b = 2mn, c = m2 + n2.

Any choice of m and n, with m larger than n, will give a valid triple. If, however,
we ensure that one is even and one is odd and they have no common factor, then
a, b and c are also guaranteed to have no common factor. All other triples will be
multiples of one of these.

The following are the triples with the smallest numbers:
m = 2, n = 1 : a = 3, b = 4, c = 5
m = 3, n = 2 : a = 5, b = 12, c = 13
m = 4, n = 1 : a = 15, b = 8, c = 17
m = 4, n = 3 : a = 7, b = 24, c = 25
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Quadratic Equations

Equations – expressions containing an ‘=’ and an unknown quantity – are powerful
tools, often enabling possible values of that quantity to be found. They range from
the straightforward, such as those used in Section 4 to complete partially solved
clues, to the intractable. Occupying the middle ground are quadratic equations,
where the square of the unknown quantity is involved. These are within the scope
of possible Listener puzzles but are also a useful tool in the solution process as an
example will show.

The most general quadratic equation is ax2 + bx + c = 0, where a, b and c are
known values and x is to be determined. There are two solutions:

x =
−b +

√
b2 − 4ac

2a
and

−b −
√

b2 − 4ac

2a
.

In some cases the second of these is negative, in which case it is unlikely to be
relevant in one of these puzzles.

Note that we require b2 − 4ac to be zero or greater than zero if there is to be
a solution, a fact that could be helpful. Also, assuming that any solution will need
to be a whole number, b2 − 4ac would have to be a perfect square, which is also
potentially helpful. (This important quantity is known as the discriminant.)

Suppose we wish to find L from PLAY+ BALL = 12331, with P = 7, A = 11,
Y = 3 and B = 2. The equation that results is 231L + 22L2 = 12331. Before
using the formula above, note that A occurs in both terms, so we would expect a
common factor of 11 in the equation. (This may have been used already to fill gaps
in 12331.) This can be cancelled to produce the simpler version

2L2 + 21L− 1121 = 0.

The formula leads to one positive and one negative solution. The former is

L =
1

2 × 2

(
−21 +

√
9409

)
=

1
4

(−21 + 97) = 19.

Logarithms

These are very important tools in mathematics, enabling scientists to transform
many natural processes to more tractable forms. They occasionally occur in math-
ematical crosswords.

A log(arithm) requires a base to be specified. For our purposes the most appro-
priate base is that of the number system, so here we use base 10. (It should prove
straightforward to translate the following to other bases.) The definition is

x = log10 n if 10x = n.

(We now drop the subscript 10.)
Some examples are
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log 100 = 2 since 102 = 100
log 10000 = 4 since 104 = 10000
log 10 = 1 since 101 = 10
log 1 = 0 since 100 = 1
log 0.1 = −1 since 10−1 = 0.1

Logarithms do not play a major rôle in crosswords since there are few useful values
that are whole numbers.

Scientific calculators can be used to evaluate logs, but care is required since
they normally have two keys, typically marked log and ln . It is the former that
delivers base 10 values. (The other provides the natural or Napierian logs, which
have neater mathematical properties but a base that is not a whole number.)

Scientific calculators also have a key 10x that will ‘undo’ this. (Sometimes
it is resident on the same key as log and is accessed using the shift key.) If
log n = x, applying this key to x will recover n.

Special Numbers
There are three special numbers that have appeared in puzzles. None is a whole
number, indeed all three have never-ending and never-repeating decimal expansions.
They are, to 50 decimal places,

π = 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 · · ·
e = 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 · · ·
φ = 1.61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 · · ·

π is the ratio of the circumference of a circle to its diameter.
e is the base of the natural logarithms (mentioned in the previous item).
φ, equal to 1

2 (1 +
√

5), is the golden ratio or golden mean, held to measure the
ratio of the sides of the most aesthetically pleasing rectangular shape. Ratios of
successive terms in the Fibonacci sequence approach ever closer to φ.
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